Connect to share and comment

Whetting young appetites for science

An innovative program encourages science education for the youngest students.

Science Education Europe
Children try out networked computer laptops in the Digitial Classroom at the Microsoft stand at the CeBIT Technology Fair on March 1, 2010 in Hannover, Germany. (Sean Gallup/Getty Images)

Photo caption: Children try out networked computer laptops in the Digitial Classroom at the Microsoft stand at the CeBIT Technology Fair on March 1, 2010 in Hannover, Germany. (Sean Gallup/Getty Images)

BRUSSELS, Belgium — Global rankings of students’ academic performance are fairly predictable. Asians and Europeans share the top spots while the United States is down the list, further than everyone — most of all Americans — believes it should be, and laments it loudly.

The European Union usually shines in such international assessments, especially with the crowning jewel of Finland, lauded around the world as the country providing its children the best possible education. Western Europe always puts in a respectable showing, and eastern members such as Hungary often pop up near the top as well. So compared with the U.S., Europe faces far less serious problems in its education system, right?

“Wrong,” says David Jasmin, one of the premier innovators in European education, who has just launched a new EU-funded project, Fibonacci, aimed at improving the quality of and appetite for science education. “We are facing the same challenges as the U.S.,” he said, particularly in the fields of math and science.

While calling it a “global problem,” Jasmin believes Europe is suffering more than other parts of the world from the documented decline in the number of students pursuing math and science careers.

“Lots of studies show there is a lack of human resources in science and technology,” he said. At the same time, Europe is also spending less in research investment than either the U.S. or Japan.

Concerns like Jasmin’s were the subject of a 2004 study, “Europe Needs More Scientists,” which confirmed a drop in university enrollments in subjects such as chemistry, mathematics and physics throughout the EU. Greece was the only country among the then-25 member states not experiencing a reduction.

Once upon a time, math and science were the paths to “reach for the stars” — sometimes literally, in fields such as aerospace. But even that industry has lost its luster among top graduates, as representatives from government, business and academia heard earlier this year at a workshop of the EU’s Advisory Council for Aeronautics Research in Europe, ACARE.

There Rolls-Royce Deutschland’s Director of Engineering, Norbert Arndt, confirmed his company is hearing from universities that the best students “are now heading straight for the financial and banking sectors when they complete their studies. We need to work hard to keep young people interested in our field, to feel the passion that we felt,” he said.

The council’s co-chair, Joachim Szodruch, underscored the urgency of the matter. “The question of young people is a strategic question,” he said. “Without young people we have no strategy. But we need to do more than just talk about it. We need to take action.”

Participants suggested stepping up efforts to engage children at early ages, with special science days at schools, field trips to aerospace facilities and technology competitions. But most agreed that initiatives at the local and regional levels are not enough and there needs to be more EU support.

Jasmin embodies the EU’s effort to reverse the worrying trends and believes that stimulating children’s natural curiosity is the key to a sustainable interest in the sciences. With a PhD in physics and a contagious enthusiasm for science education, the Frenchman has spent the last 15 years working on projects such as “La main a la Pate” — meaning “hands in the dough” or “hands on” — a French program promoting “inquiry-based science education” (ISBE) in primary schools.