Connect to share and comment

Three Mile Island expert: Fukushima could kill 200,000

Interview: The worst is "probably" past, but there’s a one-in-four chance Fukushima could deteriorate. Here’s how.

Here’s how it works: The cesium settles on the seafloor. That gets absorbed by aquatic plants, seaweed and other life. The bottom feeders eat that, and other animals eat them, and it works its way up the food chain. Eventually, it will make it into the larger fish that we and the Japanese eat — the tuna and the salmon, for example.

You’ll be monitoring fish, I think, for decades.

Will that be limited to Japan?

I think most of the contamination will be localized to within 100 miles of the plant. The problem is that fish swim. The bigger fish swim longer distances, and now of course they’re flown around the world for eating. It’s too early for that contamination to show up in these predators. It has to work its way up the food chain. You’re probably safe to eat fish in Tokyo now. I’d worry about it more in three or four months than I do now. They’ll have to monitor fish markets by sampling the meat and putting it in a detector to see if it’s contaminated.

That said, they’ve already found contamination in small fish 35 miles south of the plant.

Is it likely that the levels of contamination will be harmful for human consumption?

Yes. Here’s an example: Chernobyl wafted cesium 137 into Germany. We’re talking about more than 300 miles. Even now, 25 years later, the wild boar that eat the mushrooms on the soil that’s absorbed the cesium 137, can’t be eaten.

When hunters capture a wild boar, they give it to a state lab to determine whether it’s clean. One-third of the wild boars are contaminated. So with that as an example on an airborne release, I can’t imagine that a waterborne release will be any different.

What about the many products that are manufactured in Japan and transported around the world? Are they safe?

Aside from food, I wouldn’t worry about Toyotas or silicon chips for computers or other industrial products. They’ll be fine.

Will there be health impacts in North America? What are you doing to protect yourself?

I bought Iodine pills, but I’m not using them. I don’t think the radioactive iodine releases in New England, where I live, are going to be significant enough to worry about. I haven’t looked at California or Alaska or other West Coast data.

After our last interview, you were criticized as an alarmist by people ranging from a Vermont state senator to Rush Limbaugh. Now that the crisis has been elevated to a 7, the maximum level, how would you respond to them?

I was really being objective. I think that rather than me being an alarmist, they were being apologists. The record has shown that the alarmists were right and the apologists were wrong.

Some commentators are saying that even with the Fukushima accident, nuclear power is far safer than coal, which kills thousands of people each year from mining accidents, pollution-related lung cancers and the like. Do you agree with this?

Coal kills a lot of people, there’s no doubt about it. But it’s a false alternative to say we need more nukes because coal kills more people.

I think we need to reconsider the central power station paradigm — where big power plants provide electricity to a large area. Whether it’s coal or nuclear, that was right for the 20th century. It’s wrong for the 21st century.

My thought is that we shouldn’t shut nuclear reactors down immediately because they’re killing people in Japan. You simply can’t do that. Instead, Fukushima forces us to look at this paradigm of putting enormous amounts of money into one plant. The Votgle plants in Georgia — two of them will be pushing $20 billion. I think our money would be better spent distributing the grid.

With the advent of smart grids and distributed transmission of electricity and power sources like a 2 megawatt windmill or a gas-powered “bloom box” fuel cell that generates electricity very efficiently, I think that by 2040 we’ll be a distributed energy network. New nukes are like the Maginot line of electricity. By building them, we’ll be trying to solve a problem that technology has already surpassed, the way the French built the Maginot line tried to prevent the Germans from invading. Instead, they just went around.

Follow David Case on Twitter: @DavidCaseReport

Editor's note: Here's GlobalPost's first interview with Gundersen, conducted immediately after the accident.